Klávesové zkratky na tomto webu - základní­
Přeskočit hlavičku portálu


Dělení elektronů v ultratenkých drátcích může způsobit počítačovou revoluci

aktualizováno 
Společný tým fyziků z univerzit v Cambridgi a Birminghamu experimentálně potvrdil, že elektrony nemusejí být za všech okolností nedělitelné. Pokus ukázal, že se v tenkých drátech mohou rozdělit v nové částice, spinony a holony. Mohlo by to závažně ovlivnit další vývoj počítačového průmyslu.

Nanowire. Ilustrační foto. | foto: www.nsf.gov

Představte si otáčející se kouli. Teď od sebe zkuste oddělit kouli a její otáčení. Zdá se vám, že je to nesmysl? V běžném světě něco takového není možné, ale v kvantovém ano.

A když je dáte znovu dohromady, zase dostanete točící se kouli. Tak nějak to s elektrony v ultratenkých drátech je. Zní to dost podivně, ale kvantová fyzika bývá velmi bizarní. To, co nám radí náš úsudek vyplývající z každodenní zkušenosti, ve světě atomů a subatomárních částic obvykle neplatí.

Na pochopení kvantových jevů nám "obyčejný selský" rozum nestačí, často pro jejich popis ani nemáme vhodná slova či pojmy. Faktem ale je, že v případě elektronu od sebe skutečně můžeme oddělit vlastní částici a její rotaci.

Náboj a spin

Elektron je považován za fundamentální stavební blok přírody, nemá žádný tvar ani velikost a jako takový by měl být už dále nedělitelný. Je odpovědný za vedení elektrického proudu ve vodičích a za magnetické projevy látek, přičemž jeho magnetické a elektrické vlastnosti (náboj a spin) byly až donedávna považovány rovněž za neoddělitelné.

V roce 1981 však fyzik Duncan Haldane přišel s hypotézou, že za určitých podmínek, konkrétně v ultratenkých drátech a za velmi nízkých teplot, by mělo být možné od sebe elektrický náboj elektronu a jeho spin oddělit. Nově vzniklé hypotetické částice tehdy pojmenoval jako holony (částice nesoucí náboj) a spinony (spinové částice).

Kvantové dráty

Britským fyzikům z Cambridge a Birminghamu se nedávno podařilo uskutečnit experiment, při kterém se Haldanovy předpoklady jednoznačně potvrdily. Spinony a holony tedy nejsou pouhým výplodem čiré fantazie, ale byly skutečně pozorovány.

Elektrony v ultratenkých drátcích

Elektrony v ultratenkých drátcích

V obyčejných kovech se elektrony mezi sebou odpuzují, což je dáno jejich zápornými elektrickými náboji. Když se ale nalézají ve velmi tenkém, téměř jednorozměrném vodiči, jejich chování se začíná významně měnit.

Přítomnost dalších elektronů ve svém bezprostředním okolí elektrony špatně "snášejí", je pro ně čím dál těžší držet se dál od ostatních a nakonec se tedy "raději" rozdělí, a tak vznikají holony a spinony. Holony dál nesou jen elektrický náboj a spinony spin, tedy zjednodušeně rotaci původního elektronu.

Nanozařízení

Aby bylo možné pokus provést, museli vědci elektrony v "kvantovém drátě", ultratenkém vlákénku o průměru řádově několika desítek nanometrů, co nejtěsněji uzavřít. Poté drátek umístili do blízkosti kovové desky a pozorovali, jak elektrony z kovu tzv. kvantovým tunelováním přeskakují do drátu.

Při pokusu opakovaně zaznamenali rozpad jednotlivých elektronů na dvojice nových částic, holony a spinony. Asi není třeba dodávat, o jak náročný experiment šlo. Nejen protože měření probíhala za extrémně nízkých teplot, několik desetin stupně nad absolutní nulou.

V průběhu pokusu totiž museli experimentátoři překonávat mnoho technologických obtíží a pro jeho zdárný průběh byli nuceni vyvinout celou řadu nových měřících přístrojů a zařízení, a všechny v nanoměřítku. Jeden z účastníků experimentu, Chris Ford, k tomu poznamenává: "Museli jsme vymyslet způsob, jak předat náboj mezi deskou a drátem, vzdálenými pouhých 30 atomů od sebe."

Další počítačová revoluce na obzoru?

Kromě toho, že pokus podal jasný důkaz toho, že se elektrony skutečně mohou rozštěpit na dvě částice, experiment ještě prokázal zajímavý fakt, že spinony a holony se mohou vyskytovat v mnohem větších vzdálenostech, než teorie předpovídala. To by mohlo otevřít dveře budoucím praktickým aplikacím.

"Kvantové dráty se hojně užívají k propojení kvantových teček, na kterých by v budoucnosti mohl být založen nový typ počítačů, tzv. kvantových počítačů. Proto pochopení jejich vlastností může být pro kvantové technologie důležité, stejně jako by mohlo přispět k vývoji úplnější teorie supravodivosti a vodivosti v pevných látkách obecně. Mohlo by to vést k nové počítačové revoluci."

Zdroj: www.cam.ac.uk

Autor:




Hlavní zprávy

Další z rubriky

Předsunutý DSLAM.
Kratší „poslední míle“ má zrychlit i zoufale pomalé internetové přípojky

Za nízké přenosové rychlosti mnoha telefonních internetových DSL přípojek může jejich velká vzdálenost od ústředny. Vyřešit by to měly takzvané vysunuté...  celý článek

Obrys letadla je hotový. Testovací piloti Boeingu kreslili 787 Dreamliner ve...
Testovací piloti Boeingu si hrají: kreslí letadlo přes celou Ameriku

Unikátní grafický záznam trasy letu má let BOE004 z letiště Seattle Boeing Field na letiště Seattle Boeing Field. Vypadá jako obří letadlo.  celý článek

Termosnímek letadla (ilustrační foto)
Co se stane, když do letadla uhodí blesk? Křídlo Boeingu 707 vybuchlo

Otázky. Samé otázky. Někteří lidé si před nástupem do letadla kladou tolik otázek, že do něj nakonec nikdy nevkročí. Nyní vychází kniha, která tyto otázky...  celý článek

Akční letáky
Akční letáky

Prohlédněte si akční letáky všech obchodů hezky na jednom místě!

Najdete na iDNES.cz



mobilní verze
© 1999–2017 MAFRA, a. s., a dodavatelé Profimedia, Reuters, ČTK, AP. Jakékoliv užití obsahu včetně převzetí, šíření či dalšího zpřístupňování článků a fotografií je bez souhlasu MAFRA, a. s., zakázáno. Provozovatelem serveru iDNES.cz je MAFRA, a. s., se sídlem
Karla Engliše 519/11, 150 00 Praha 5, IČ: 45313351, zapsaná v obchodním rejstříku vedeném Městským soudem v Praze, oddíl B, vložka 1328. Vydavatelství MAFRA, a. s., je členem koncernu AGROFERT.