Klávesové zkratky na tomto webu - základní­
Přeskočit hlavičku portálu


Kvantová levitace? Nic není nemožné, tvrdí američtí fyzici

aktualizováno 
Trojici vědců z USA se podařilo obrátit směr působení tajemné Casimirovy síly, čímž nade vší pochybnost prokázali, že její účinky jsou nejen přitažlivé, ale i odpudivé. To mimo jiné znamená, že v návrzích nanotechnologických zařízení lze počítat s tzv. kvantovou levitací.

kvantova levitace

Dosud byla levitace (vznášení hmotných těles) spíše záležitostí bájí a pohádek či kouzelnických triků než seriózního vědeckého výzkumu, přesto ji fyzikální zákony nevylučují. Způsobů, jak překonat gravitaci, se nabízí několik, nejčastěji se k podobným účelům využívají silná magnetická pole.

Levitace se nemusí týkat jen neživých objektů, jak ukazuje případ z roku 2000, kdy se vědcům podařilo vznést do vzduchu pomocí magnetického polštáře živou žábu. Uvedený pokus měl tehdy značnou publicitu a úspěšným experimentátorům vynesl žertovné ocenění -  cenu Ig Nobel.

Ovšem s levitací se můžeme setkat i v kvantovém světě, tedy těch nejmenších fyzikálních struktur, atomů a molekul, jak nyní prokázala studie vedená profesorem Federicem Capassem z Harvardovy univerzity.

Jeho tým jako první na světě podal definitivní důkaz, že nezvyklý kvantový úkaz, kterému fyzici říkají Casimirův jev, se může projevovat i odpudivým způsobem, o čemž se až do zveřejnění objevu spíš jen spekulovalo.

Casimirův efekt

Jev předpověděl v roce 1948 nizozemský fyzik Hendrik Casimir (1909 – 2000). Zjistil, že pokud se dvě rovnoběžné a nenabité desky přiblíží na dostatečně malou vzdálenost, začnou se přitahovat do té doby neznámou silou.

Podstatu Casimirova jevu lze vysvětlit poměrně jednoduše. Jak mezi deskami, tak v okolním prostředí totiž dochází k neustálým fluktuacím vakuového pole, tj. ke vzniku virtuálních párů částic a antičástic.

V prostoru mezi deskami se jich ale rodí méně, neboť virtuální částice zde mohou mít jen určité vlnové délky, a sice takové, aby vzdálenost mezi deskami byla jejich celočíselným násobkem. Protože pro částice v okolí žádné takové omezení neplatí, je jich nutně více, což se nakonec projeví silou, která tlačí desky k sobě.

Casimirův jev byl v minulosti několikrát ověřen, ovšem uplatňuje se pouze při velmi nepatrných vzdálenostech, menších než 100 nanometrů. "Pokud jsou oba povrchy ze stejného materiálu, například ze zlata, odděleny vakuem, vzduchem nebo kapalinou, výsledná síla je vždy přitažlivá,“ tvrdí Capasso.

Nechtěné tření

Přitažlivá Casimirova síla byla změřena s velkou přesností a inženýři s ní při navrhování nových nanopřístrojů skutečně počítají. Ovšem její přitažlivé účinky návrhářům působí spíše problémy, protože díky nim dochází k nepříjemné přilnavosti nanosoučástek.

V některých případech to může dojít až tak daleko, že se součástky k sobě přilepí a nelze je od sebe odtrhnout. Přitažlivé Casimirovy síly tak díky nežádoucímu tření limitují miniaturizaci tzv. mikro-elektro-mechanických systémů (MEMS), které mají rozsáhlé možnosti použití, například se jimi pohánějí airbagy v automobilech.

Odpudivé kvantové síly

V roce 1956 Jevgenij Lifšic na základě studia vakuových fluktuací v reálných materiálech a tekutinách naznačil, že Casimirova síla by mohla být i odpudivá. Od té doby se vědci mnohokrát pokoušeli změnit směr jejího působení, nikomu se to však nepodařilo.

Až do té doby, než Capasso publikoval svůj objev. Nanotechnologům tak konečně svitla jiskra naděje. V lednovém vydání časopisu Nature Capasso a další členové jeho výzkumného týmu popisují, jak letitý oříšek dokázali jednou pro vždy rozlousknout.

Vědci měřili velikost a směr síly působící mezi dvěma tenkými plátky ponořenými do brombenzenu. Místo kovu (zlata) na jednom z povrchů ale použili křemík, přesněji oxid křemičitý, čímž dosáhli kýženého efektu. Původně přitažlivá síla se opravdu změnila v odpudivou.

"Odpudivé Casimirovy síly jsou předmětem velkého zájmu, neboť mohou být využity u ultracitlivých senzorů na měření sil a kroutících momentů k levitaci objektů ponořených do kapaliny a vznášejících se v nanometrických vzdálenostech nad povrchem,“ říká Capasso a pokračuje: "Tyto objekty se mohou vůči sobě volně otáčet či posouvat, s minimálním statickým třením, protože jejich povrchy nikdy nepřijdou do přímého kontaktu.“

Kvantová levitace a její aplikace

Mezi rozličnými způsoby aplikace nového objevu autoři studie především zdůrazňují možnosti, které nabízí kvantová levitace. Očekávají, že její projevy by se mohly uplatnit v situacích, kdy bude požadováno ultranízké tření mezi jednotlivými díly mikro- a nanozařízení. V této souvislosti očekávají též vývoj nových typů miniaturních kompasů, rychloměrů a gyroskopů.

Zdroje: harvardscience.harvard.edu 

Autor:




Hlavní zprávy

Další z rubriky

Ústřední telekomunikační budovu na pražském Žižkově čeká za několik let...
Odtud k vám dostanou 300 Mbit/s internet i po stoletých kabelech

Ústřední telekomunikační budovu na pražském Žižkově čeká za několik let demolice. Pojďte si s námi prohlédnout místa, kde dříve stovky spojovatelek propojovaly...  celý článek

Ilustrační snímek
Jak těsně se mohou letadla minout? Bude se vám zdát, že hrozivě blízko

Můžete při letu rozeznat cestující ve druhém letadle? Co se stane, když selžou všechny motory? Právě na tyto dvě otázky se dozvíte odpovědi v následujícím...  celý článek

Fotoaparáty Nikon používají fotografové už 100 let
Fotoaparáty Nikon používají lidé už 100 let

VIDEO Před 100 lety začala v Tokiu působit společnost Nikon, dnes velikán na trhu s fotoaparáty. Do Evropy a Ameriky se ale společnost dostala až v roce 1950, a to...  celý článek

Najdete na iDNES.cz



mobilní verze
© 1999–2017 MAFRA, a. s., a dodavatelé Profimedia, Reuters, ČTK, AP. Jakékoliv užití obsahu včetně převzetí, šíření či dalšího zpřístupňování článků a fotografií je bez souhlasu MAFRA, a. s., zakázáno. Provozovatelem serveru iDNES.cz je MAFRA, a. s., se sídlem
Karla Engliše 519/11, 150 00 Praha 5, IČ: 45313351, zapsaná v obchodním rejstříku vedeném Městským soudem v Praze, oddíl B, vložka 1328. Vydavatelství MAFRA, a. s., je členem koncernu AGROFERT.