Klávesové zkratky na tomto webu - základní­
Přeskočit hlavičku portálu


Začal hon na čtvrtou prostorovou dimenzi

  15:54aktualizováno  15:54
Američtí fyzici přišli s plánem, jak otestovat předpověď jednoho z moderních kosmologických modelů. Podle něj je náš svět, vesmír, ponořen v ještě mohutnějším kosmu s jednou prostorovou dimenzí navíc.

4. dimenze | foto: A. Hanson

Arlie Petters z Dukovy univerzity a Charles Keeton z Rutgersovy univerzity (obě v USA) ve svém článku ukázali, že v důsledku existence čtvrté dimenze by vesmír měl být zaplněn miniaturními černými děrami.

Na čem se kosmologický model zakládá a jak podle zmíněných vědců může být existence dalšího rozměru potvrzena experimentem?

Hledání finální teorie kosmu aneb svět tančí v rytmu strun

Podle konvenčních představ standardního částicového modelu stavba hmoty končí u kvarků a elektronů — již dále nedělitelných částic, které jsou bezrozměrné; jde prostě a jednoduše o body. Zastánci tzv. teorie strun však tvrdí něco naprosto jiného: svět není složen z několika různých bodových elementárních částic, nýbrž z drobounkých jednorozměrných smyček a vláken — strun.

Přechod od bezrozměrných částic k jednorozměrným strunám jako mávnutím kouzelného proutku řeší neduhy, kterými trpěly snahy o sjednocení teorie mikrokosmu, kvantové mechaniky a teorie, jejímiž zákony se řídí vesmír na největších měřítkách - obecná teorie relativity.

Chtějí-li vědci nahlédnout do míst, kde je potřeba, aby obě teorie táhly za jeden provaz (jakými jsou např. centra černých děr nebo samotný počátek kosmu), musejí vyvinout jejich fungující slitinu: kvantovou teorii gravitace.

To, o jakou částici se jedná (zda například o kvark, elektron či snad foton), je dáno způsobem, jakým struna „tančí“ — druh částice je určen vibračním modem struny. Podobně jako struny na houslích nebo na kytaře mohou vyluzovat různé tóny, odlišná vibrace strun rodí rozličné částice. Ač Lenny Susskind, Holger Nielsen a Yoichiro Nambu v roce 1970 teorii strun vyvinuli s jiným záměrem (k objasnění silné jaderné síly), John Schwarz a Joel Scherk roku 1974 zjistili, že obsahuje vibrační vzorek, který odpovídal gravitonu — zatím hypotetické částice gravitačního pole.

Rázem měli teoretici v rukou rámec, jenž sliboval, že může být kvantovou teorií gravitace, jelikož vůbec poprvé se stalo, že nějaká teorie gravitaci předpovídá a popisuje ji kvantově mechanickým jazykem.

Učinili tak obrovský krok k finální teorii, kterou po třicet let hledal i Albert Einstein, teorii, jež by byla s to popsat všechny síly a hmotu vesmíru.

M-teorie

Problémem byla skutečnost, že vědci časem zjistili, že neexistuje jedna strunová teorie, nýbrž celých pět různých odrůd, které se v jistých ohledech velmi lišily. Pak však v roce 1995 Edward Witten, přední strunový teoretik, přišel s revoluční prací, v níž ukázal, že všech pět teorií je ekvivalentních, tj. popisují tutéž fyziku, tentýž svět, ovšem poněkud odlišným způsobem.

Jeho sjednocující rámec byl nazván M-teorií. Nadto vyšlo najevo, že krom jednorozměrných strun mohou existovat i vícerozměrné objekty: dvourozměrné membrány neboli dvojbrány, trojbrány atd. Obecně je označujeme jako p-brány, kde p značí počet rozměrů, který musí být menší než deset.

Pokud vám něco nehraje ohledně počtů rozměrů, divíte se právem. Teorie strun říká, že počet rozměrů v našem světě není tři, nýbrž deset, započteme-li i čas. Podle teoretiků tak musí existovat ještě šest dodatečných rozměrů.

Z prací vyplynulo, že pro nás jsou neviditelné z toho důvodu, že v každém bodě trojrozměrného prostoru jsou stočeny do malinkatých prostůrků zvaných Calabiho-Yauovy variety. M-teorie k tomu obsahuje další, jedenáctou dimenzi, která je však ještě menší než šest dodatečných rozměrů teorie strun.

Právě díky vynoření nové malinké dimenze se Wittenovi podařilo prokázat ekvivalentnost všech pěti strunových verzí.

Calabiho-Yauova varieta, 3D projekce v systému Mathematica, autor: A. Hanson


Postupem doby fyzici shledali, že struny a brány nemusejí být zákonitě malinké; pokud by obsahovaly dostatek energie, mohou narůst do obřích, až nekonečných rozměrů.

Právě s touto možností pracují scénáře bránových světů, podle kterých náš vesmír je trojbránou vznášející se ve vícerozměrném kosmu s velkou dodatečnou dimenzí.

Bránové světy

Lisa Randallová z Harvardovy univerzity, v období 1999-2004 nejcitovanější fyzik vysokých energií, a Raman Sundrum z Univerzity Johna Hopkinse v roce 1999 publikovali články, ve kterých se zabývali možností, že vesmír je trojbránou plovoucí ve čtyřrozměrném kosmu, tedy v prostoru světů. Ačkoli jejich modely nebyly prvními pracemi, které náš vesmír v bránovém kontextu popisovaly, jsou specifické svými vlastnostmi, ze kterých pak plynou řešení pro určité problémy teoretické fyziky.

Jejich dva populární modely, typu I a typu II, se liší v tom, že zatímco v prvním je dodatečná dimenze kompaktní, tj. její velikost je omezena, v druhém typu je fakticky nekonečná, čímž Randallová se Sundrumem zbořili letitou představu, že dodatečné dimenze musejí být nutně kompaktní. Dalším podstatným rozdílem je, že první typ obsahuje ještě jednu bránu, jiný svět, kdežto v druhém typu se v prostoru světů vznášíme sami.


Náš vesmír, trojbrána, ve 4D prostoru světů


Arlie Petters a Charles Keeton nyní ukázali, že model Randallové-Sundruma druhého typu s sebou nese pozorovatelné důsledky. Zjistili, že pokud je náš vesmír trojbránou ve čtyřrozměrném prostoru světů s libovolně velkou dodatečnou čtvrtou dimenzí, vesmír by měl být plný miniaturních černých děr, a také přišli na způsob, jak se o jejich existenci dozvědět.

Miniaturní bránové černé díry a cesta za experimentem

Fyzici vědí, že krom hvězdných černých děr vzniklých gravitačním kolapsem starých velmi hmotných hvězd a supermasivních děr v jádrech většiny galaxií mohly v raném kosmu existovat také miniaturní primordiální černé díry, jejichž hmotnosti odpovídaly hmotnostem planetek. Známý fyzik Stephen Hawking v 70. letech ukázal, že černé díry nejsou úplně černé — díky kvantovým efektům se pomalu vypařují.

Dle výpočtů se primordiální černé díry měly dávno vypařit, a v současném vesmíru by již neměly existovat. Ovšem z modelu Randallové-Sundruma typu II plyne, že vypařování černých děr je pomalejší, než bychom jinak čekali: primordiální černé díry mohou stále existovat (v tomto kontextu jim říkejme bránové černé díry) a mohou být složkou tzv. skryté hmoty vesmíru, o jejíž podstatě se toho ví pramálo a která tvoří markantní část hmoty celého vesmíru.

Podle Keetona a Petterse by se bránové černé díry mohly nacházet již na úrovni dráhy planety Pluto. Vědci ve své studii dále tvrdí, že pokud by bránové černé díry tvořily i pouhé jedno procento z celkové skryté hmoty, ve sluneční soustavě by jich měly být tisíce.

Pozorovat takto titěrné, skoro bodové objekty přímo je prakticky nemožné (pozorovat přímo jakoukoliv černou díru je nemyslitelné; astrofyzici je pozorují nepřímo zkoumáním jejich gravitačních vlivů na okolí, ovšem v případě takto nepatrných a lehoučkých černých děr tato metoda nepřichází v úvahu).

Jak však z teorie vyplynulo, bránové černé díry by mohly zanechat otisky na gama záření, energetickém elektromagnetickém záření putujícím vesmírem, uvolněném při gama záblescích, nejmohutnějších explozích v kosmu.

Gama záření procházející kolem bránových černých děr by se mělo ohnout podobně jako světlo při průchodu optickou čočkou. Tento efekt gravitační čočky předpověděl v roce 1936 Einstein a není ničím výjimečným.

Ovšem podle propočtů Petterse a Keetona by záření mělo vykazovat jisté charakteristiky, odlišné od předpovědí Einsteinovy teorie gravitace, jelikož díky blízkému spojení se čtvrtým prostorovým rozměrem bránové černé díry zakřivují prostoročas odlišně než normální černé díry; v tzv. interferenčním obrazci by měla mezi tmavými a světlými proužky vzniknout zúžení, která by tam podle konvenční teorie neměla existovat.

„Popisuje-li scénář bránových světů náš kosmos, pak by měly existovat spousty bránových černých děr po celém vesmíru; a všechny nesou otisky čtvrtého prostorového rozměru,“ tvrdí autoři.

Interferenční charakteristiky gama záření bude zkoumat vesmírný teleskop GLAST (Gamma-Ray Large Area Space Telescope), jehož start je plánován na srpen příštího roku.





Hlavní zprávy

Další z rubriky

Aukční síň Sotheby's připravila na čtvrtek 20. července velkou dražbu 173...
Aukční síň draží vesmírné artefakty, třeba taštičku na prach za miliony

Aukční síň Sotheby's připravila na čtvrtek 20. července velkou dražbu 173 položek, které souvisí s lidským dobýváním vesmíru. Právě 20. července slavíme 48....  celý článek

Ilustrace základny na Marsu
Lidi na Mars hned tak nepoletí, není dost peněz, ozvala se NASA

Americký prezident Donald Trump by chtěl dostat lidi na Mars nebo alespoň znovu na Měsíc. Má to však háček: NASA na to nemá peníze.  celý článek

První fotografie Velké rudé skvrny (Great Red Spot) na Jupiteru pořízená...
NASA získala první podrobný snímek největší bouře ve Sluneční soustavě

Přestože se zmenšuje, je stále 1,3krát větší než Země. Velká rudá skvrna na Jupiteru, největší planetě Sluneční soustavy, byla poprvé vyfotografována zblízka....  celý článek

Najdete na iDNES.cz



mobilní verze
© 1999–2017 MAFRA, a. s., a dodavatelé Profimedia, Reuters, ČTK, AP. Jakékoliv užití obsahu včetně převzetí, šíření či dalšího zpřístupňování článků a fotografií je bez souhlasu MAFRA, a. s., zakázáno. Provozovatelem serveru iDNES.cz je MAFRA, a. s., se sídlem
Karla Engliše 519/11, 150 00 Praha 5, IČ: 45313351, zapsaná v obchodním rejstříku vedeném Městským soudem v Praze, oddíl B, vložka 1328. Vydavatelství MAFRA, a. s., je členem koncernu AGROFERT.