Klávesové zkratky na tomto webu - základní­
Přeskočit hlavičku portálu


Vyfotil jeden jediný atom. Stačil běžný foťák a složitá past

aktualizováno 
Atomy jsou pouhým okem neviditelné, to víme všichni. Ale pokud je správně nasvítíte a připravíte pro ně vhodné „pódium“, situace se trochu změní.

Snímek zachycující jediný atom stroncia v tzv. iontové pasti. Atom je uprostřed mezery mezi dvěma hroty ve středu obrázku. Pro představu, skutečná délka mezery je cca 2,3 milimetru. | foto: David Nadlinger, Oxford Univesity

Vyhlašování soutěže o nejlepší vědeckou fotografii britské grantové ceny EPSRC (viz Wikipedie) nesledují obvykle agenturní zpravodajové se zatajeným dechem. Ovšem vítězná fotografie letos v únoru vyhlášeného ročníku zaujala a rychle se objevila v médiích po celém světě.

Pořídil ji postgraduální student David Nadlinger z Oxfordské univerzity a řekněme rovnou, že neukazuje nic převratného. Slibuje naopak něco, co si dokáže představit každý laik: atom viditelný očima - či přesněji obyčejným fotoaparátem. (Autor použil Canon 5D Mk II, objektiv EF 50mm f/1.8.)

Najdete ho v samotném středu obrázku. Tečka, kterou vidíte, je skutečně odraz světla od jediného atomu stroncia ve zhruba dvoumilimetrové mezeře mezi hroty „pasti“, která ho drží na místě. Jak je to možné?

Řekněme rovnou pro jistotu, že jde vlastně o iluzi. Stroncium samozřejmě nemá atomy velké tak, aby byly vidět pouhým okem. Na poměry atomárního světa tedy rozhodně nejsou malé, ale i tak se jejich velikost měří na zlomky nanometrů (cca 0,251x10-9 metru), je zhruba desettisíckrát menší než nejmenší objekt, který reálně může lidské oko zahlédnout.

Detail snímku jediného atomu stroncia v tzv. iontové pasti.

Atom v centru obrázku je osvětlený modrým laserovým světlem a my vidíme záři odráženého světla. Kterého je ovšem málo, a proto byl snímek pořízen s 30sekundovou expozicí. Je to podobné jako u hvězd na obloze: i ty jsou ve skutečnosti vlastně menší než obraz, který vytváří naše oko a mozek. 

Jak chytit atom do pasti

Z vědeckého hlediska snímek neobsahuje žádné překvapivé informace a nic nového z něj nejde vyčíst. Ale to neznamená, že zachycuje nesmyslný pokus. Zachycení jednotlivých atomů je velmi zajímavá technika, díky které se o jejich chování a vlastnostech můžeme dozvědět spoustu zajímavého.

Už několik desetiletí se k tomu v laboratořích používají pasti tvořené elektromagnetickým polem ve vakuové komoře. Samozřejmě past nefunguje pro neutrální atomy, ale výhradně na ionty. Jejich „výroba“ probíhá ozařováním proudu neutrálních atomů stroncia laserem. Atom v podstatě drží na místě kombinace polí vytvářených „hroty“ (elektrodami) po stranách snímku a především elektrod nad a pod ním. Tedy, abych nebyli úplně nepřesní: atomy samozřejmě nestojí, v podstatě „vibrují“ zhruba na stejném místě. 

Grafické znázornění tvaru elektromagnetického pole, který vězní atomy v iontové...

Grafické znázornění tvaru elektromagnetického pole, který vězní atomy v iontové pasti. Elektrody (celkem čtyři, jedna není příliš vidět) jsou znázorněné jako červené plochy. Atom „sedí“ zhruba v místě vyznačeném červeným kroužkem. Na první pohled to nevypadá jako příliš stabilní poloha, ale ve skutečnosti pole velmi rychle osciluje - přepíná se s frekvencí několika megahertzů. V tu chvíli už „sedlo“, kde se atom nachází, je pro něj stabilním útočištěm. Úplně stejný jev byste mohli vidět v praxi s míčem a jezdeckým sedlem. Pokud sedlo stojí, míče na něj nepostaví. Pokud byste ho ovšem správně roztočili kolem středu, míč se na něm udrží. Pokud nevěříte, najděte si na YouTube třeba výraz „Rotating Saddle“. A ještě dodejme, že dvě boční elektrody, které na snímku nejsou, pracují se stejnoměrným napětím, jsou to v podstatě takové „špunty“ na obou koncích pasti.

Světlo, které se na atomu odráží, a díky kterému ho můžeme vidět, dodává hustá síť modrých laserů (vlnová délka je přesně 397 nanometrů). Ty neslouží v pasti k osvětlování, primárně mají za účel zachycené atomy zchladit na teploty z laického pohledu v podstatě rovné absolutní nule. To je nadále „zklidní“ (sníží jejich kinetickou energii), aby bylo možné pak s atomy manipulovat, například pro potřeby výzkumu kvantových výpočetních postupů atp.

Chlazení atomů laserem je technicky velmi komplikovaná záležitost, která vyžaduje nejen chytrý přístup, ale také extrémní pečlivost a přesnost. Zachycené ionty přicházejí o energii při srážkách s fotony laserového světla - velmi podobně jako vy přijdete o energii, když pro vás v běhu někdo hodí fotbalový míč. Jeden vás nezpomalí moc, ale když jich bude dost, udrží vás na místě. 

Frekvence laseru musí být naprosto přesně „vyladěna“, a to s přesností na jednu stotisícinu procenta. Jinak foton atomem proletí bez efektu.

Ovšem přesně naladit rezonanční frekvenci iontu, který chcete zachytit, nestačí. Objevuje se totiž jiný problém: pokud foton poletí proti atomu ve chvíli, kdy ten se pohne opačným směrem, srážka atom zpomalí (a ochladí). Ale co když se atom zrovna pohne opačným směrem, směrem od laseru? V tu chvíli ho přece srážka urychlí...

Protože směr pohybu atomu v danou chvíli nejde předpovídat, zdá se to jako neřešitelný problém. Řešení ovšem samozřejmě existuje a je jím využití tzv. Dopplerova jevu. Ten říká, že frekvence záření se mění podle směru, kterým se při pozorování pohybujete. Jinými slovy: když se dostatečně rychle blížíte ke zdroji světla/zvuku, bude vypadat/znít jinak, než když pojedete (znovu dostatečně rychle, aby byl efekt dost výrazný) směrem od něj. Jedno velmi jednoduché přirovnání říká, že je to jako s auty na dálnici: i když je aut v obou směrech stejně, cestou minete více aut v protisměru než v tom vašem. Kdybyste ale stáli na mostě nad dálnicí, viděli byste jich stejně.

Laser je tak vyladěný těsně pod rezonanční frekvenci zachyceného iontu (tedy v případě snímku stroncia). Iont ho tak pohltí jen v případě, že se zrovna pohybuje proti proudu laserových fotonů a frekvence laseru se z jeho hlediska zvýší. Jinak ho bude ignorovat.

Samozřejmě v praxi to ještě podstatně složitější než na papíře. Naučit se postavit a správně provozovat iontovou past s téměř dokonalým vakuem, chlazením na extrémně nízké teploty a správně nastavenou laserovou sítí není nic triviálního. Ale když už se vám to podaří, můžete vyfotit i světlo odrážející se od jednoho jediného atomu.

Autor:



Nejčtenější

Největší vzducholoď Zeppelin je v Praze. Podívejte se na přistání

Netradiční pohled se naskytl Pražanům i lidem, kteří bydlí mezi hlavním městem...

Netradiční pohled se dnes naskytl Pražanům i lidem v Česku, jimiž nad hlavami proletěla největší komerční vzducholoď...

Libeňský most nejde zachránit. Stavěli ho starou technologií, práci odbyli

Libeňský most

Nejde opravit tak, aby vydržel sto let, shodují se odborníci na mostní konstrukce a beton. Libeňský most je postaven...



Někdo zřejmě tajně vyrábí látky ničící ozónovou vrstvu. Ale kdo a kde?

Ozonová díra, jako je nad Antarktidou na snímku, nad Arktidou není. Zatím.

Množství látek poškozujících ozónovou vrstvu v posledních letech klesá překvapivě pomalu, ohlásili vědci. Někde zřejmě...

Zaostalí Arabové měli strach ze vzdělaných židovských přistěhovalců

Demonstrace proti nové Bílé knize omezující židovskou migraci do Palestiny, 1939

Před 70 lety byl založen stát Izrael. Co vše tomuto aktu předcházelo, co vadilo Arabům na Židech vracejících se do své...

Budete si moci dát na web fotky z koncertu i příští týden? GDPR přichází

Vyšší ochrana dat klientů neboli GDPR

Už v pátek 25. května začne platit Obecné nařízení o ochraně osobních údajů, tzv. GDPR. Ačkoliv se kolem něj rozvinula...

Další z rubriky

Čas na přepsání učebnic. DNA se neformuje jen do dvoušroubovice

Nově objevená struktura i-motif

Vědci už desetiletí předpovídají, že DNA se neformuje jen do spirální dvoušroubovice. Tým výzkumníků nyní dokázal...

Lék proti rakovině otestujeme do dvou let, řekl v Rozstřelu Majer

Pavel Majer z Ústavu organické chemie a biochemie AV ČR v diskusním pořadu...

Tým českých vědců pracuje na slibné léčebné látce nejen proti rakovině. Co může dokázat a co vědce ještě čeká,...

Sklep v Říčanech vydává 600 let starou záhadu. Poklad ukrytý před Žižkou

Pražské groše z říčanského pokladu

Do toho hrnečku se vešly veškeré rodinné úspory. Proč je majitel do svého sklepa ukryl, nevíme jistě. Jisté ovšem je,...

Ušetřete pár korun.
Ušetřete pár korun.

Víte, kde jsou nejlevnější pleny? My ano.

Najdete na iDNES.cz