Klávesové zkratky na tomto webu - základní­
Přeskočit hlavičku portálu


Světový objev s českou účastí ukazuje atomy v barvě

  9:29aktualizováno  9:29
Vidět jednotlivé atomy vědci umějí už pětadvacet let. Rozeznat jeden od druhého teprve několik týdnů. Zasloužil se o to mezinárodní tým sedmi fyziků, v němž figuruje i čtyřiatřicetiletý teoretik Pavel Jelínek z Fyzikálního ústavu Akademie věd.

Titulní stránka časopisu Nature - Hlavní téma čísla, titulní strana čísla, přizpůsobený obsah – vše se týká objevu světového významu Foto popis| Pavel Jelínek z Fyzikálního ústavu Akademie věd, spoluautor článku v Nature. | foto: Nature

Renomovaný časopis Nature jejich společnou práci otiskl 1. března jako hlavní článek čísla.

Tunel k atomům

V roce 1986 bral Nobelovu cenu za fyziku vynález takzvaného řádkovacího tunelovacího mikroskopu (STM, Scanning Tunneling Microscope). Po pravdě řečeno, s klasickým světelným mikroskopem, známým už čtyři staletí, nemá tenhle složitý přístroj pranic společného. Místo koukání totiž měří a počítá, a to nikoli na tisíciny metru (tak „velké“ jsou kupříkladu bakterie), ale odhaluje objekty až desetmilionkrát menší (desetiny nanometru – tak „malé“ jsou kupříkladu atomy).

Jak to dělá? Těsně nad povrchem vzorku přejíždí nabitý, nesmírně jemný hrot zakončený jediným atomem. Mezi hrotem a povrchem tunelovým jevem přeskakují elektrony, tudíž prochází nepatrňoučký elektrický proud, takzvaný tunelovací. Ten poněkud kolísá podle toho, nad čím se hrot právě nachází – přímo nad atomem je větší, nad mezerou mezi atomy menší. A právě ze změn proudu se dá složitou procedurou vypočítat rozmístění atomů na povrchu vzorku.

Černobílé povrchy

Mikroskop STM má však jednu nevýhodu: jelikož stojí a padá s elektrickým proudem, funguje pouze na vodivých materiálech. Proto fyzikové takřka okamžitě začali přemýšlet, jak vidět i atomy na površích nevodičů. Samozřejmě na to přišli. Místo nabitého hrotu nechali těsně nad sledovaným povrchem pojíždět elektricky neutrální raménko, které velmi rychle kmitá.

Proti kmitání působí síla chemické vazby, která se chce utvořit mezi konečným atomem raménka a atomem povrchu, nad kterým se raménko zrovna nachází. Síla se projevuje změnou frekvence kmitání. Dál je to podobné jako u STM – největší síla je přímo nad atomem, nejmenší nad mezerou. Přístroj, který zobrazuje atomy podle rozložení jejich vazebné síly, se jmenuje mikroskop atomových sil (AFM, Atomic Force Microscope).

Oba způsoby, STM i AFM, tedy umějí o každém místě zkoumaného povrchu říct buď „atom tam je“, nebo „atom tam není“. Nedokážou však rozeznat, jakému chemickému elementu ony atomy patří.

Prvky v barvách

Na vědeckém kongresu v německém Bad Essenu v létě 2005 představila experimentální skupina japonského profesora Mority jedinečnou metodu měření vazebných sil takovou přesností, že by už v podstatě umožňovala rozlišit atomy různých prvků.

To je docela výkon – museli totiž tuto sílu vypreparovat ze směsi s několika jinými. Chyběla maličkost: umět naměřená data náležitě interpretovat. A to je práce pro teoretiky. Japonci s nejlepším přístrojem si vybrali i nejlepší spolupracovníky. Těmi tehdy byli dva Španělé z madridské univerzity a jeden Čech z Fyzikálního ústavu Akademie věd (arci školený v Madridu). Ti společně vypracovali fyzikálně matematickou metodu, která zatím jako jediná na světě umožňuje jednotlivé atomy nejen vidět, nýbrž určit je jako konkrétní chemické prvky. Z černobílého obrazu se tak stává barevný.

Modifikaci přístroje typu AFM, který dokáže „malovat v barvách“, tvůrci nazvali DFM (Dynamic Force Microscope).

Atomové pisátko

Společným výsledkem všech sedmi badatelů jsou zatím tři publikace, z nichž poslední právě vyšla v nejvlivnějším nespecializovaném vědeckém časopise – v Nature. Redakce práci zařadila jako hlavní, přizpůsobila jí skladbu celého čísla a autorům nabídla obálku pro obrázek.

To dokládá bezesporu velký úspěch. Ale k čemu by to jednou mohlo být užitečné? Odpovídá spoluautor publikace Pavel Jelínek: „Prvním směrem využití je atomární analýza při výzkumu reakcí na površích, už se takhle kupříkladu začíná studovat ukládání vodíku jako paliva pro automobilový průmysl. Jednou ale uvidíme i reakce na povrchu buněk nebo makromolekul. V elektronice si zase dovedu představit kontrolu, či dokonce výrobu a ladění mikroprocesorů o rozměrech nanometrů.“ Druhým hlavním směrem využití přístroje bude manipulace s jednotlivými atomy.

Doktor Jelínek objasňuje: „Pokud hrot nebo raménko umístíme ve vhodné výšce, potom atom pod ním se přichytí na hrot a jinde se zase pustí. Tak lze vytvářet třeba mikroelektronické prvky ještě mnohem menší, než bylo dosud možné. V podstatě tedy hrot používáme jako tužku, přemisťované atomy jako inkoust.“

Autoři:




Hlavní zprávy

Další z rubriky

Paul Otellini
Zemřel Paul Otellini, bývalý šéf, který upevnil pozici Intelu

Ve věku 66 let zemřel Paul Stevens Otellini, bývalý ředitel americké společnosti Intel. Ve firmě pracoval od roku 1974, od roku 1998 byl v jejím vedení.  celý článek

Tento Šmolík Š.2 je exponátem Leteckého muzea Kbely.
První vojenský letoun československé konstrukce nepotěšil Francouze

První vojenský letoun československé výroby vznikl v roce 1920 v budoucím Letovu a jeho konstruktérem byl Alois Šmolík. Z typu byla odvozena i civilní létající...  celý článek

Poškozený motor číslo 4 - Air France let číslo 66
Cestující zažili děsivé okamžiky, Airbusu se nad oceánem obnažil motor

V Kanadě nouzově přistál francouzský Airbus A380-800 s rozbitým motorem. Za letu nad Atlantickým oceánem se dopravnímu letadlu poškodil jeden z motorů. Nikdo z...  celý článek

Akční letáky
Akční letáky

Prohlédněte si akční letáky všech obchodů hezky na jednom místě!

Najdete na iDNES.cz



mobilní verze
© 1999–2017 MAFRA, a. s., a dodavatelé Profimedia, Reuters, ČTK, AP. Jakékoliv užití obsahu včetně převzetí, šíření či dalšího zpřístupňování článků a fotografií je bez souhlasu MAFRA, a. s., zakázáno. Provozovatelem serveru iDNES.cz je MAFRA, a. s., se sídlem
Karla Engliše 519/11, 150 00 Praha 5, IČ: 45313351, zapsaná v obchodním rejstříku vedeném Městským soudem v Praze, oddíl B, vložka 1328. Vydavatelství MAFRA, a. s., je členem koncernu AGROFERT.